LA 2 uP uC M2
LA 2 - Percobaan 8
2. Buat program untuk mikrokontroler STM32F103C8 di software STM32 CubeIDE.
3. Compile program dalam format hex, lalu upload ke dalam mikrokontroler.
4. Jalankan simulasi rangkaian pada proteus.
5. Selesai.
1. Mikrokontroler STM32F103C8

2. Touch Sensor

3. Power Supply
4. Motor DC (Dinamo DC)
5. Motor Stepper
6. ULN2003A
7. Potensiometer
Diagram Blok:
#include "stm32f1xx_hal.h"
// ============================
// Konstanta dan Definisi Pin
// ============================
#define STEPPER_PORT GPIOB
#define IN1_PIN GPIO_PIN_8
#define IN2_PIN GPIO_PIN_9
#define IN3_PIN GPIO_PIN_10
#define IN4_PIN GPIO_PIN_11
#define TOUCH_SENSOR_PORT GPIOB
#define TOUCH_SENSOR_PIN GPIO_PIN_0
#define MOTOR_DC_PORT GPIOB
#define MOTOR_DC_PIN GPIO_PIN_7
// ============================
// Variabel Global
// ============================
ADC_HandleTypeDef hadc1;
const uint8_t STEP_SEQ_CW[4] = {
(1 << 0), // IN1
(1 << 1), // IN2
(1 << 2), // IN3
(1 << 3) // IN4
};
const uint8_t STEP_SEQ_CCW[4] = {
(1 << 3), // IN4
(1 << 2), // IN3
(1 << 1), // IN2
(1 << 0) // IN1
};
uint8_t current_mode = 0; // 0 = CW, 1 = CCW
volatile uint8_t touch_state = 0; // Status sentuh (jika dibutuhkan untuk ekstensi)
// ============================
// Deklarasi Fungsi
// ============================
void SystemClock_Config(void);
void MX_GPIO_Init(void);
void MX_ADC1_Init(void);
void RunStepper(const uint8_t *sequence, uint8_t speed);
void Error_Handler(void);
// ============================
// Fungsi Utama
// ============================
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
while (1) {
// Saat sensor tidak disentuh
if (HAL_GPIO_ReadPin(TOUCH_SENSOR_PORT, TOUCH_SENSOR_PIN) == GPIO_PIN_RESET) {
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) {
uint16_t adc_val = HAL_ADC_GetValue(&hadc1);
current_mode = (adc_val < 2048) ? 0 : 1;
}
if (current_mode == 0) {
RunStepper(STEP_SEQ_CW, 5);
} else {
RunStepper(STEP_SEQ_CCW, 5);
}
}
HAL_Delay(1);
}
}
// ============================
// Fungsi Stepper
// ============================
void RunStepper(const uint8_t *sequence, uint8_t speed) {
static uint8_t step = 0;
HAL_GPIO_WritePin(STEPPER_PORT, IN1_PIN, (sequence[step] & (1 << 0)) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(STEPPER_PORT, IN2_PIN, (sequence[step] & (1 << 1)) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(STEPPER_PORT, IN3_PIN, (sequence[step] & (1 << 2)) ? GPIO_PIN_SET : GPIO_PIN_RESET);
HAL_GPIO_WritePin(STEPPER_PORT, IN4_PIN, (sequence[step] & (1 << 3)) ? GPIO_PIN_SET : GPIO_PIN_RESET);
step = (step + 1) % 4;
HAL_Delay(speed);
}
// ============================
// Inisialisasi GPIO
// ============================
void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_AFIO_REMAP_SWJ_NOJTAG(); // Bebaskan PB3 dan PB4 jika dibutuhkan
// Touch Sensor (Input + Interrupt)
GPIO_InitStruct.Pin = TOUCH_SENSOR_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TOUCH_SENSOR_PORT, &GPIO_InitStruct);
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
// Motor DC (PB7)
GPIO_InitStruct.Pin = MOTOR_DC_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(MOTOR_DC_PORT, &GPIO_InitStruct);
// Stepper Motor (PB8 - PB11)
GPIO_InitStruct.Pin = IN1_PIN | IN2_PIN | IN3_PIN | IN4_PIN;
HAL_GPIO_Init(STEPPER_PORT, &GPIO_InitStruct);
}
// ============================
// Inisialisasi ADC
// ============================
void MX_ADC1_Init(void) {
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
}
// ============================
// Konfigurasi Clock
// ============================
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}
}
// ============================
// Callback EXTI (Interrupt)
// ============================
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
if (GPIO_Pin == TOUCH_SENSOR_PIN) {
GPIO_PinState pinState = HAL_GPIO_ReadPin(TOUCH_SENSOR_PORT, TOUCH_SENSOR_PIN);
if (pinState == GPIO_PIN_SET) {
// Saat disentuh: nyalakan motor DC, matikan stepper
HAL_GPIO_WritePin(MOTOR_DC_PORT, MOTOR_DC_PIN, GPIO_PIN_SET);
HAL_GPIO_WritePin(STEPPER_PORT, IN1_PIN | IN2_PIN | IN3_PIN | IN4_PIN, GPIO_PIN_RESET);
} else {
// Saat dilepas: matikan motor DC
HAL_GPIO_WritePin(MOTOR_DC_PORT, MOTOR_DC_PIN, GPIO_PIN_RESET);
}
}
}
// ============================
// Interrupt Handler
// ============================
void EXTI0_IRQHandler(void) {
HAL_GPIO_EXTI_IRQHandler(TOUCH_SENSOR_PIN);
}
// ============================
// Error Handler
// ============================
void Error_Handler(void) {
while (1) {}
}
- Motor stepper memiliki beberapa kumparan (biasanya 4 atau lebih) yang harus diaktifkan dalam urutan tertentu untuk menggerakkan motor satu langkah demi satu langkah.
- Driver bertugas mengatur urutan pulsa (step), mengontrol arah, serta mengatur arus/tegangan ke tiap fasa motor.
- Pengendalian langsung dari mikrokontroler akan terlalu kompleks dan bisa merusak pin karena arus motor lebih besar dari kemampuan pin I/O biasa.
- Dapat langsung dikendalikan dengan tegangan DC sederhana — misalnya 0V untuk mati dan 5V atau 12V untuk hidup.
- Namun, jika ingin kontrol kecepatan atau arah, maka tetap perlu driver (HBridge) atau PWM control.
- Jadi, untuk kontrol sederhana, MDC bisa lebih mudah dihubungkan.
- Umumnya memiliki feedback internal dari potensiometer untuk menentukan posisi poros.
- Servo menerima sinyal PWM, dan membandingkan nilai posisi PWM dengan posisi aktual dari potensiometer.
- Ketika sinyal PWM berubah (misalnya untuk mengatur sudut 0° ke 90°), kontroler internal membandingkan nilai ini dengan nilai resistansi potensiometer.
- Jika nilai PWM menunjukkan posisi target lebih besar dari posisi potensiometer saat ini, maka servo berputar ke kanan.
- Jika nilai PWM lebih kecil dari posisi sekarang, maka servo berputar ke kiri.
- Arah putar servo ditentukan oleh perbedaan nilai target dan nilai aktual potensiometer.