TP 1 uP uC M2
1. Prosedur [Kembali]
- Rangkai sesuai gambar percobaan dengan inputnya yaitu sensor Soil Moisture dan outputnya yaitu LED RGB dan Motor Stepper
- Buatlah program dengan konfigurasi pin input dan output berdasarkan pada pin GPIO STM32 yang telah dirangkai sebelumnya. Kemudian buatlah program untuk menghasilkan output LED RGB sesuai kondisi yang telah ditentukan
- Run simulation dan lihat perubahan ketika sensor soil moisture mendeteksi kelembapan basah
- Program selesai
3. Rangkaian Simulasi dan Prinsip Kerja [Kembali]
Rangkaian ini bekerja dengan sensor soil moisture sebagai input serta LED RGB dan Motor Stepper sebagai output.
Sensor soil moisture jika mendeteksi basah, maka akan menghasilkan output LED RGB akan berwarna merah dan motor stepper akan bergerak.
Gambar Flowchart
Listing Program :
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
MX_GPIO_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// Sensor aktif LOW (tanah basah)
if (HAL_GPIO_ReadPin(soil_sensor_GPIO_Port, soil_sensor_Pin) == GPIO_PIN_RESET)
{
// LED Merah ON, Hijau & Biru OFF
HAL_GPIO_WritePin(GPIOB, red_red_Pin, GPIO_PIN_SET); // Merah ON
HAL_GPIO_WritePin(GPIOB, green_led_Pin, GPIO_PIN_RESET); // Hijau OFF
HAL_GPIO_WritePin(GPIOB, blue_led_Pin, GPIO_PIN_RESET); // Biru OFF
}
else
{
// Tanah kering, semua LED mati
HAL_GPIO_WritePin(GPIOB, red_red_Pin | green_led_Pin | blue_led_Pin, GPIO_PIN_RESET);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, red_red_Pin | green_led_Pin | blue_led_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : soil_sensor_Pin */
GPIO_InitStruct.Pin = soil_sensor_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(soil_sensor_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : IN3_Pin IN4_Pin IN1_Pin IN2_Pin */
GPIO_InitStruct.Pin = IN3_Pin|IN4_Pin|IN1_Pin|IN2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : red_red_Pin green_led_Pin blue_led_Pin */
GPIO_InitStruct.Pin = red_red_Pin|green_led_Pin|blue_led_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add implementation to report the file name and line number */
}
#endif /* USE_FULL_ASSERT */